
1

Simplified, Parallelized InSAR Scientific
Computing Environment

Paul A. Rosen, Eric Gurrola, Piyush Agram,
Geoffrey Gunter

Jet Propulsion Laboratory
California Institute of Technology

Michael Aivazis
Parasim, Inc.

Howard Zebker
Stanford University

Earth Science Technology Forum
NASA Ames Conference Center

June 12, 2019

2

Simplified Parallelized InSAR Scientific Computing
Environment (SPISCE) Background

X																																						=					

4-year, 4-km baselineReference Geocoded SLC Secondary Geocoded SLC

L-band PALSAR Over Hawaii Multilooked Interferogram

• Past ESTO investments have created the InSAR Scientific Computing
Environment (ISCE), used by individual users and semi-operational production
systems (ARIA)

• The growth in data from Sentinel 1 and soon NISAR requires a fundamentally
different way of interacting with data

• This work exploits the power for GPUs to slice through data and implement
framework elements to give scientists a different user experience

GPU-accelerated Geocoded SLC data and related workflows will help
users create derived products with simple editable operations

3

Objectives

• Develop a workflow that generates single look complex (SLC) images in an
easily ingestible form for data utility, incorporating all necessary InSAR phase
corrections and resampling to provide products that anyone can understand

• Develop methods of computational acceleration by exploiting back projection
methods on cloud-enabled GPU platforms to directly compute focused and
InSAR-corrected imagery in UTM (Landsat grid).

• GPU-parallelize and otherwise accelerate key algorithms in InSAR Scientific
Computing Environment (ISCE) to gain factors of 10-100 increase in speed.

• Develop framework technologies at the user interface that support a more
natural way for scientists to specify products and actions.

• Provide open source solutions

4

Geocoded SLC workflow

• Developed the workflow – foundation of data processing in Stanford’s research group

• InSAR process flow experimentation

• Is it needed to create redundant interferograms to get best results in the context of

the starting point of geocoded SLC?

• Socializing geocoded SLC’s with the community

• Papers at AGU

• Papers at LPS and IGARSS this year.

GPU parallelization of back-projection processor

• Significant (10-100 X) improvements to speed and efficiency – 2 seconds per image

GPU parallelization of ampcor processor

• Excellent (1000 X) improvement in speed and efficiency

Pyreized workflow

• ISCE 2 components upgrade to pyre – “complete”

• SPISCE 1.0 with GUI showing each component as a workflow node near complete

Summary of Results

5

• Creating a time series view of Kilauea eruption is greatly simplified
by starting with geocoded SLCs facilitated by backprojection

User-friendly products

Traditional
“range-doppler”
Image – hard to
interpret!

6

L0 SLC processing for TOPS

• Dealiasing
computationally
expensive and
very intricate
though elegant

• Backprojection
same for all
modes

• Short integration
time makes
backprojection
efficient

Standard* Backprojection

*Sentinel 1 SAR Technical Guide

Signal Data Orbit Data

Range Proc

Zero padding
Azimuth FFT

TOPSAR?

Azimuth
Frequency UFR

TOPSAR?

Azimuth
Compression

RCMC

Sec. Range
Compression

Time Freq.
UFR

SLC

Azimuth
Preprocessing

Azimuth
Processing

Azimuth
Postprocessing

Signal Data Orbit, DEM Data

Range Proc/
Sec. compression

Backprojection

SLC

Azimuth
Processing

7

Interferogram formation – by user

Standard (Yague-Martinez et al.,2016) Backprojection

SLC SLC

8

1

2

3

4

Independent stacking
1

2

3

4

Redundant stacking

Example: Noise decreases, accuracy increases with
“redundant” data generation

�ind =
1

2
(�13 + �24)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�red =
1

4
(�13 + �24 + �14 + �23)

<latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit><latexit sha1_base64="(null)">(null)</latexit>

�ij = �defo
ij + �aps

ij + �decor
ij

<latexit sha1_base64="pokcVbRRncfdvlj5rB7J6ApMV/0=">AAACJnicbZDLSgMxFIYz9VbrrerSTbAIglBmtKCbQsGNywr2Am0tmcyZNjYzGZKMUIZ5Gje+ihsXFRF3PorpBenFHwJf/nMOyfndiDOlbfvbyqytb2xuZbdzO7t7+wf5w6O6ErGkUKOCC9l0iQLOQqhppjk0IwkkcDk03MHtuN54BqmYCB/0MIJOQHoh8xkl2ljdfBm3oz7rJuwpLf/RY+KBL9KLOYNEauHuARUy7eYLdtGeCK+CM4MCmqnazY/anqBxAKGmnCjVcuxIdxIiNaMc0lw7VhAROiA9aBkMSQCqk0zWTPGZcTzsC2lOqPHEnZ9ISKDUMHBNZ0B0Xy3XxuZ/tVas/ZtOwsIo1hDS6UN+zLEWeJwZ9pgEqvnQAKGSmb9i2ieSUG2SzZkQnOWVV6F+WXSuivZ9qVApzeLIohN0is6Rg65RBd2hKqohil7QGxqhD+vVerc+ra9pa8aazRyjBVk/v7tBp8E=</latexit>

Can now generate “redundant”
interferograms where before it was not
practical

Conclusion: AIST improved workflow
makes InSAR sensitive and accurate for
many more events and studies

In
de

pe
nd

en
t s

ta
ck

in
g

R
ed

un
da

nt
 s

ta
ck

in
g

Slow slip
earthquake
signal in
Cascadia

9

Observed Deformation and Seismicity Application
From 1407 interferograms enabled by AIST backprojection processor

Induced seismicity from oil and gas production – Delaware Basin, Texas
Participants: Texas Bureau of Economic Geology, Stanford Center for Induced and Triggered Seismicity

40
km

<----- subsidence uplift ----->

river
At left: Seismicity
(eq’s) correlates
well with observed
deformation signal

Wolfcamp and deeper production

70 km

At right: Production
correlates well with
observed
deformation signal
south of river

Neither seismicity nor deformation
correlate spatially north of river, likely
due to geological setting and fault
type

Example of Socialization of Products with Community

10

Image cross-correlation GPU-acceleration

• Slide a tile within the search window whose shape is the same as the
reference tile

• Compute a correlation measure at each possible placement
• Record the placements of maximum correlation for each tile
• Build and post-condition a correlation surface to form the offset field

C++ intermediary code improvements (20X)
• memory mapped IO
• algorithms from the C++ STL
• a dedicated data structure to simplify

multi-dimensional indices arithmetic

GPU code improvements (addl. 1500X)
• careful packing of the input tiles in memory
• minimizing the data transfer cost between

host and device
• eliminating memory bank conflicts within

the device
• highly tuned implementation of the

reduction kernels

11

CPU: Intel Xeon CPU E5-2698 v4 | GPU: Nvidia

Tesla V100

Performance evaluation:

runtimes for generating a

single complex image (3600

x 7200)

GPU-Accelerated back projection comparison

GPU (‘native’ impl.)

M
a
g
n
it
u
d
e
 [
d
B

]

CPU (80 threads)

M
a
g
n
it
u
d
e
 [
d
B

]

Interferometric phase between CPU & GPU SLCs

12

GPU backprojection code modifications

GPU

CPU
Read
raw

phase
history

Read
DEM

Write
SLC

Range
compress

Pixelwise
convert
LLH→EC

EF

Pixelwise
estimate

zero-
Doppler

time

Azimuth
compress

Old code

GPU

CPU
Read
raw

phase
history

Read
DEM

Write
SLC

Range
compress

Pixelwise
convert
LLH→EC

EF

Pixelwise
estimate

zero-
Doppler

time

Azimuth
compress

Modified code

13

Workflow visualizer (Flo)

• We are building a web-based application
– simplify and organize access to the dozens of

configurable parameters
– support interactive processing
– embedded within the isce application

• Managing the user experience for such a
complex system is a challenge
– multiple layers of information
– complicated workflows tend to become difficult to

render in an understandable way
– users have high expectations from such interfaces

• Dozens of attempts to solve this problem
– we think we have a good chance to avoid the known

pitfalls, and provide a workable solution

14

Visual language prototype

15

Simple flow examples

Server:
• isce+pyre (GitHub: isce-framework/isce2 and pyre/pyre)

Client:
• SVG (and soon webgl) for the rendering of the graph
• ReactJS framework to build the user experience https://reactjs.org.

Client-Server interaction: a collection of data queries, mutations and subscriptions.
• GraphQL middleware (https://graphql.org).
• WebSockets.

https://reactjs.org/
https://graphql.org/

16

Early design – editing factory metadata

17

Early design – flow execution

18

Summary

• ESTO Investments in SAR Processing are
changing the way we interact with larger and
larger volumes of data

• GPU-Accelerated generation of directly
geocoded imagery enables previously prohibitive
exploration of combinatoric interferometry

• GPU-Accelerated total workflow optimizations
are enabling a degree of interactivity and
experimentation on science problems

• A framework-based workflow visualizer, focused
on products and interface simplicity, promises to
make the interaction fun, iterative, and minable
in the future

